skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gehrig, Lukas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Protoplanetary disk evolution exhibits trends with stellar mass, but also diversity of structure, and lifetime, with implications for planet formation and demographics. We show how varied outcomes can result from evolving structures in the inner disk that attenuate stellar soft X-rays that otherwise drive photoevaporation in the outer disk. The magnetic truncation of the disk around a rapidly rotating T Tauri star is initially exterior to the corotation radius and “propeller” accretion is accompanied by an inner magnetized wind, shielding the disk from X-rays. Because rotation varies little due to angular momentum exchange with the disk, stellar contraction causes the truncation radius to migrate inside the corotation radius, the inner wind to disappear, and photoevaporation to erode a gap in the disk, accelerating its dissipation. This X-ray attenuation scenario explains the trend of the longer lifetime, reduced structure, and compact size of disks around lower-mass stars. It also explains an observed lower bound and scatter in the distribution of disk accretion rates. Disks that experience early photoevaporation and form gaps can efficiently trap solids at a pressure bump at 1–10 au, triggering giant planet formation, while those with later-forming gaps or indeed no gaps form multiple smaller planets on close-in orbits, a pattern that is consistent with observed exoplanet demographics. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026